Advanced Crash Course in Supercomputing:

OLCF==.

DAk RIDGE LEADERSHIP COMPUTING FACILITY \.

Rebecca Hartman-Baker
Oak Ridge National Laboratory
hartmanbakrj@ornl.gov

© 2004-2011 Rebecca Hartman-Baker. Reproduction permitted for non-
commercial, educational use only.

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

About OpenMP
. OpenMP Directives
l. Data Scope

V. Runtime Library Routines and Environment Variables
V. Using OpenMP
VI. Hybrid Programming

> OJLCFeeee

RICHARD STALLMAN !
YOUR VIRAL OPEN SOURCE LICENSES
HAVE GROWN T0O POWERFUL.

(THE GPL MUST stmmvl

(ATTHE SOURCE ==~
Q= .

7227

== HAH! MIGROSOFT LACKE YS!
_50 IT HAS COME TO THIS.

ANIGHT OF BLOOD IVE LONG AWAITED.
BUT BE THIS MY DEATH OR YOURS,
FREE SOFTWARE W)LL CARRY ON!

FOR A GNU DAwN! FOR FREEDOM!

/__J OR LINUS TORWDS I HEAg \
(- HEY, WHERE ARE vouoomej SLEERS WITH NUNCHUCKS.)

SHING!

1. ABOUT OPENMP

Source: http://xked.com/225/

OLCFeee

About OpenMP

* Industry-standard shared memory programming model
* Developed in 1997

* OpenMP Architecture Review Board (ARB) determines
additions and updates to standard

4 OLCFeeee

Advantages to OpenMP

* Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

* Can express simple or complex algorithms
* Code size grows only modestly

* Expression of parallelism flows clearly, so code is easy to
read

» Single source code for OpenMP and non-OpenMP - non-
OpenMP compilers simply ignore OMP directives

s OLCF eeee

OpenMP Programming Model

* Application Programmer Interface (API) is combination of
— Directives
— Runtime library routines
— Environment variables

* API falls into three categories
— Expression of parallelism (flow control)
— Data sharing among threads (communication)
— Synchronization (coordination or interaction)

6 OLCFeeee

Parallelism

Shared memory, thread-based parallelism

Explicit parallelism (parallel regions)
* Fork/join model

e

master
thread

{ parallel region } { parallel region }

Source: https://computing.linl.gov/tutorials/openMP/

7 OLCFeeee

THE EPIC NEW YORK TIMES BESTSELLER!

5TAR TREK
583

7 BRIME
 DIREGTIVE,

%\ JUDITH AND GARFIELD REEVES-STEVENS 4

Il. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

8 ODLCFeeee

Il. OpenMP Directives

* Parallel

* Loop

* Sections

* Synchronization

' OLCFeeee

OpenMP Directives: Parallel

* A block of code executed by multiple threads

* Syntax:

fpragma omp parallel private (list)\
shared (l1ist)

/* parallel section */

10 JLCFeeee

Simple Example

#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {
int tid;
printf (“Hello world from threads:\n”);
fpragma omp parallel private(tid)
{
tid = omp get thread num();
printf (“<%d>\n"”, tid):;
}
printf ("I am sequential now\n”);

return 0O;

1N JLCFeeee

Output (Simple Example)

Output 1 Output 2

Hello world from Hello world from
threads: threads:

<0> <1>

<1> <2>

<2> <0>

<3> <4>

<4> <3>

I am sequential now I am sequential now

2 JLCFeeee

OpenMP Directives: Loop

* lterations of the loop following the directive are executed in
parallel

* Syntax:

— #pragma omp for schedule (type [,chunk])\
private(list) shared(list) nowait

{
/* for loop */

}
— type={static,dynamic, guided, runtime}
— If nowait specified, threads do not synchronize at end of loop

BOLCFeeee

Which Loops Are Parallelizable?

Parallelizable Not Parallelizable
» Number of iterations known « Conditional loops (many while
upon entry, and does not loops)
change Y
* |terator loops (e.g., iterating over
« Each iteration independent of all astd::list<..>inC++)
others

* |terations dependent upon each
 No data dependence other

 Data dependence

4 JLCFeeee

Example: Parallelizable?

/* Gaussian Elimination (no pivoting) :

x = A\D */
for (int 1 = 0; 1 < N-1; 1++) {
for (int 3 = 1i; 3 < N; J++) {
double ratio = A[J][i]/A[i] [1i];
for (int k = 1; k < N; k++) {
A[J][k] —-= (ratio*A[1][k]);
b[j] -= (ratio*b[1]);

5 JLCFeeee

Example: Parallelizable?

16 J_LCFeee AIDGE

Example: Parallelizable?

* Qutermost Loop (1):
— N-1 iterations

— lterations depend upon each other (values computed at step 1 -1
used in step 1)

* Inner loop (7):
— N-1 iterations (constant for given i)
— lterations can be performed in any order

* Innermost loop (k):
— N-1 iterations (constant for given i)
— lterations can be performed in any order

17 JLCFeeee

Example: Parallelizable?

/* Gaussian Elimination (no pivoting) :
x = A\b </

for (int 1 = 0; 1 < N-1; 1i++) {
#pragma omp parallel for
for (int 7 = i; 7 < N; Jj++)
double ratio = A[j][i]/A[i
for (int k = 1i; k < N; k++
A[J][k] -= (ratio*A[i] [k
b[j] -= (ratio*bl[il]);
}

}

Note: can combine parallel and for into single pragma line

8 JLCFeeee

OpenMP Directives: Loop Scheduling

» Default scheduling determined by implementation

e Static

— |ID of thread performing particular iteration is function of iteration
number and number of threads

— Statically assigned at beginning of loop

— Load imbalance may be issue if iterations have different amounts
of work

* Dynamic
— Assignment of threads determined at runtime (round robin)

— Each thread gets more work after completing current work
— Load balance is possible

9 J_LCFeeee

Loop: Simple Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main () {
int 1, chunk;
float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++)
ali] = bli] =1 * 1.0;
chunk = CHUNKSIZE;
#fpragma omp parallel shared(a,b,c,chunk) private (i)
{
fpragma omp for schedule (dynamic,chunk) nowait
for (1=0; 1 < N; 1++)
c[i] = af[1] + b[1];
} /* end of parallel section */
return O;

20 JLCFeeee

OpenMP Directives: Sections

 Non-iterative work-sharing construct

» Divide enclosed sections of code among threads
* Section directives nested within sections directive
 Syntax

#fpragma omp sections

{
fpragma omp section
/* first section */
#fpragma omp section
/* next section */

2 JLCFeoeee

Sections: Simple Example

#include <omp.h>
#define N 1000
int main () {

int 1i;

double a[N], b[N],

c[N], dIN];

/* Some initializations

*/

for (1=0; 1 < N; 1++) {
al[i] =1 * 1.5;
b[i] = 1 + 22.35;

#fpragma omp parallel \
shared(a,b,c,d) private (i)
{
#fpragma omp sections nowait
{
#fpragma omp section
for (i=0; 1 < N; i++)
c[i] = al[i] + b[i];
#pragma omp section
for (i=0; 1 < N; i++)
dfi] = ali] * b[i];

} /* end of sections */

} /* end of parallel section */

return 0O;

}

2 OJLCFeeee

OpenMP Directives: Synchronization

» Sometimes, need to make sure threads execute regions of
code in proper order

— Maybe one part depends on another part being completed
— Maybe only one thread need execute a section of code

» Synchronization directives
— Critical
— Barrier
— Single

B OLCFeeee

OpenMP Directives: Synchronization

e Critical
- ?pecifies section of code that must be executed by only one thread at a
ime
— Syntax
fpragma omp critical [name]
— Names are global identifiers — critical regions with same name are
treated as same region
* Single
— Enclosed code is to be executed by only one thread
— Useful for thread-unsafe sections of code (e.g., 1/0)
— Syntax

fpragma omp single

2 JLCFeeee

OpenMP Directives: Synchronization

e Barrier

— Synchronizes all threads: thread reaches barrier and waits until all
other threads have reached barrier, then resumes executing code
following barrier

— Syntax
#fpragma omp barrier

— Sequence of work-sharing and barrier regions encountered must
be the same for every thread

»s JLCFeeee

Y

l1l. VARIABLE SCOPE

Angled spotting scope. Source: http://www.spottingscopes.us/angled-scope-328.jpg

2% OLCFeeee

Variable Scope

* By default, all variables shared except
— Certain loop index values — private by default

— Local variables and value parameters within subroutines called
within parallel region — private

— Variables declared within lexical extent of parallel region — private

27 JLCFeeee

Default Scope Example

void caller (int *a, 1int n) { Var m Comment

int 1i,3,m=3;

a shared Declared outside parallel construct
fpragma omp parallel for
. . . n shared same
for (i=0; i<n; 1i++) {
int k=m; i private Parallel loop index
for (3j=1; J<=5; Jj++) |] shared Sequential loop index
callee(&ali &k, J);
(L1y s J) m shared Declared outside parallel construct
}
) k private Automatic variable/parallel region
void callee(int *x, int *y, int X private Passed by value
25 WX shared (actually a)
int ii; .
4 private Passed by value
static int cnt;
& rivate (actually k)
cnt++; Y P
for (ii=1l; 1i<z; 1ii++) { Z private (actually j)
*x = *y + z; i1 private Local stack variable in called function
} cnt shared Declared static (like global)

2% JLCFeeee

Variable Scope

 Good programming practice: explicitly declare scope of all

varia

* This
are u

nles

nelps you as programmer understand how variables
sed in program

 Reduces chances of data race conditions or unexplained

beha

vior

29 JLCFeeee

Variable Scope: Shared

 Syntax
— shared (1ist)

e One instance of shared variable, and each thread can read or
modify it

« WARNING: watch out for multiple threads simultaneously
updating same variable, or one reading while another writes

e Example

fpragma omp parallel for shared(a)
for (i = 0; 1 < N; i++) {
ali] += 1i;

30 JLCF eeee

Variable Scope: Shared - Bad Example

. #pragma omp parallel for shared(n eq)
for (i = 0; 1 < N; i++) {
. if (ali] == b[i]) |

n eqg++;

* n eq Wwill not be correctly updated

* Instead, put n eqg++; in critical block (slow) or
introduce private variable my n egq, then update
n eq in critical block after loop (faster)

31 JLCF eeee

Variable Scope: Private

Syntax

— private (list)
Gives each thread its own copy of variable

Example
fpragma omp parallel private (i, my n eq)

{
#fpragma omp for
for (i = 0; 1 < N; 1i++) {
if (a[i] == b[i]) my n egt+;

}
#pragma omp critical (update sum)
{

n egt+=my n eq;

}

2 OLCFeeee

Another Solution for Sum

#pragma parallel for
reduction (+:n eq)

for (1 = 0; 1 < N; 1i++4) {
1t (af1] == bl1]) |
n eq = n eg+l;

B OLCFeeee

IV. RUNTIME LIBRARY
ROUTINES AND
ENVIRONMENT VARIABLES

Mt. McKinley National Monument, July, 1966. Source: National Park Service Historic Photograph Collection,
http://home.nps.gov/applications/hafe/hfc/npsphoto4h.cfm?Catalog No=hpc-001845

3 OLCFeeee 7

OpenMP Runtime Library Routines

*void omp set num threads (i1nt
num threads)

— Sets number of threads used in next parallel region
— Must be called from serial portion of code

*int omp get num threads()

— Returns number of threads currently in team executing parallel
region from which it is called

*int omp get thread num()
— Returns rank of thread

— 0 = omp get thread num() <
omp get num threads ()

35 0OLCFeeee

OpenMP Environment Variables

* Set environment variables to control execution of parallel
code

* OMP_ SCHEDULE

— Determines how iterations of loops are scheduled
— E.g., setenv OMP SCHEDULE “guided, 4”

* OMP_NUM THREADS
— Sets maximum number of threads
— E.g., setenv OMP NUM THREADS 4

36 JLCFeoeee

V. USING OPENMP

37 OLCF eeee

Conditional Compilation

» Can write single source code for use with or without
OpenMP

* Pragmas are ignored

* What about OpenMP runtime library routines?

— OPENMP macro is defined if OpenMP available: can use this to
conditionally include omp . h header file, else redefine runtime
library routines

R OLCFeeee

Conditional Compilation

#ifdef OPENMP
#include <omp.h>
#else

#define omp get thread num() O
#endif

int me = omp get thread num();

9 OLCFeeee

Running Programs with OpenMP
Directives

* May need special compiler options (e.g., for PGl compilers,
use -mp=nonuma flag)

» May need to set environment variables in batch scripts (e.g.,
on Jaguar, include definition of OMP NUM THREADS in
script)

« Example: to run on 64 12-core nodes on Jaguarpf, add the
following to your script requesting 768 procs:

export OMP NUM THREADS=12
aprun —-n 64 —-N 1 myprog

0 JLCFeeee

CIDI internal Integrated power electronics
combustion

Battery pack

Final drive

5-speed
manual transmission
& automated clutch

& automated clutch Final drive Electric machine

Vi. HYBRID PROGRAMMING

Hybrid Car. Source: http://static.howstuffworks.com/qgif/hybrid-car-hyper.jpg

1 JLCFeeee

V1. Hybrid Programming

* Motivation

» Considerations

* MPI threading support

* Designing hybrid algorithms
* Examples

2 OJLCFeeee

Motivation

* Multicore architectures are here to stay

 Macro scale: distributed memory architecture, suitable for
MPI

* Micro scale: each node contains multiple cores and shared
memory, suitable for OpenMP

* Obvious solution: use MPI between nodes, and OpenMP
within nodes

* Hybrid programming model

B3 OLCFeeee

Considerations

* Sounds great, Rebecca, but is hybrid programming always
better?

— No, not always
— Especially if poorly programmed ©
— Depends also on suitability of architecture

* Think of accelerator model

— in omp parallel region, use power of multicores; in serial region,
use only 1 processor

— If your code can exploit threaded parallelism “a lot”, then try hybrid
programming

4 JLCFeeee

Considerations

* Hybrid parallel programming model
— Are communication and computation discrete phases of algorithm?
— Can/do communication and computation overlap?

e Communication between threads
— Communicate only outside of parallel regions

— Assign a manager thread responsible for inter-process
communication

— Let some threads perform inter-process communication
— Let all threads communicate with other processes

45 JLCFeeee

MPI Threading Support

» MPI-2 standard defines four threading support levels
— () MPI THREAD SINGLE only one thread allowed

— (1) MPI_THREAD FUNNELED master thread is only thread
permitted to make MPI calls

— (2) MPI_THREAD SERIALIZED all threads can make MPI
calls, but only one at a time

— (3) MPI_THREAD MULTIPLE no restrictions

— (0.5) MPI calls not permitted inside parallel regions (returns
MPI THREAD SINGLE) - thisis MPI-1

46 JLCFeeee

What Threading Model Does My Machine
Support?

#include <mpi.h>
#include <stdio.h>
int main(int *argc, char **argv) {

MPI Init thread(&argc, &argv, MPI THREAD MULTIPLE,
&provided) ;

printf ("Supports level %d of %d %d %d %d\n",
provided,

MPI_ THREAD SINGLE,

MPI THREAD FUNNELED,

MPI THREAD SERIALIZED,

MPI THREAD MULTIPLE);

MPI Finalize();
return 0;

}

47 OLCFeoeee

MPI Init Thread

* MPT Init thread(int required, int
*supported)
— Use this instead of MPTI Init(...)
— required: the level of thread support you want

— supported: the level of thread support provided by
implementation (hopefully = required, but if not available,
returns lowest level > required,; failing that, largest level <
required)

— UsingMPI Init(..) isequivalentto required =
MPI THREAD SINGLE

e MPI Finalize () should be called by same thread
that called MPT Init thread(..)

8 JLCFeeee

Other Useful MPI Functions

* MPTI Is thread main(int *flag)
— Thread calls this to determine whether it is main thread

* MPT Query thread(int *provided)
— Thread calls to query level of thread support

19 JLCFeeee

Supported Threading Models: Single

* Use single pragma
#pragma omp parallel
{

#pragma omp barrier
#pragma omp single

{
}

#pragma omp barrier

}

MPI Xyz(..)

5o JLCF eoeee

Supported Threading Models: Funneling

 XT5 supports funneling (probably Ranger too?)

 Use master pragma
#pragma omp parallel

{

#pragma omp barrier
#pragma omp master

{
}

#pragma omp barrier

}

MPI Xyz(..)

st OLCF eeee

What Threading Model Should | Use?

 Depends on the application!

m Advantages Disadvantages

Single Portable: every MPI Limited flexibility
implementation supports
this
Funneled Simpler to program Manager thread could get
overloaded
Serialized Freedom to communicate Risk of too much cross-

communication

Multiple Completely thread safe Limited availability

2 OLCFeeee

Designing Hybrid Algorithms

* Just because you can communicate thread-to-thread,
doesn’'t mean you should

* Tradeoff between lumping messages together and sending
individual messages

— Lumping messages together: one big message, one overhead
— Sending individual messages: less wait time (?)

* Programmability: performance will be great, when you finally
get it working!

S UOLCFeeee

Example: Mesh Partitioning

* Regular mesh of finite elements

* When we partition mesh, need to communicate information
about (domain) adjacent cells to (computationally) remote
neighbors

sa OLCF eoeee

Example: Mesh Partitioning

s OLCF eeee

Example: Mesh Partitioning
Communication Patterns

Processor 1 @ @ @

Processor 2 @ @ @
> >

Processor 3 @ @ @

s6 JLCFeoeoee

Bibliography/Resources: OpenMP

» Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas.
(2008) Using OpenMP, Cambridge, MA: MIT Press.

* Kendall, Ricky A. (2007) Threads R Us,
http://www.nccs.gov/wp-content/training/
scaling_workshop_pdfs/threadsRus.pdf

* LLNL OpenMP Tutorial,
https://computing.linl.gov/tutorials/openMP/

sTOLCFeeee

Bibliography/Resources: Hybrid
Programming

« von Alfthan, Sebastian, Introduction to Hybrid Programming,
PRACE Summer School 2008, o
URL:http://www.prace-project.eu/hpc-training/prace-summer-
school/hybridprogramming.pdf

* Ye, Helen and Chris Ding, Hybrid OpenMP and MPI
Er%grartnmmg and Tuning, Lawrence Berkeley National
aboratory,
http://wwvrg.nersc._qov/nusers/services/trainin_q/classes/NUG/
JunU4/NUGZ2004 _yhe hybrid.ppt

. ZoIIwe? John, Hybrid Programming with OpenMP and MPI,
Cornell University Center for Advanced Computing,
hitp://www.cac.cornell.edu/education/Training/Intro/
Hyorid-U90029.pdr

» MPI-2.0 Standard, Section 8.7, “MPI and Threads,”
http://www.mpi-forum.org/docs/mpi-20-html/
nodeT6Z2.him#Node 162

S OLCFeeee

